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A Note on Piecewise Linear and Multilinear 
Table Interpolation in Many Dimensions 

By Alan Weiser and Sergio E. Zarantonello* 

Abstract. This note is concerned with N-dimensional rectangular table interpolation, 
where N is relatively large (4 to 10). Two interpolants are considered: a piecewise mul- 
tilinear generalization of piecewise bilinear interpolation on rectangles, and a piecewise 
linear generalization of piecewise linear interpolation on triangles. We show that the two 
interpolants have similar approximation properties, but the piecewise linear interpolant 
is much cheaper to evaluate. 

1. Introduction. This note is concerned with N-dimensional rectangular table 
interpolation, where N is relatively large (4 to 10). Two interpolants are consid- 
ered: a piecewise multilinear generalization of piecewise bilinear interpolation on 
rectangles, and a piecewise linear generalization of piecewise linear interpolation on 
triangles. Both interpolants are second-order accurate, continuous, and monotone, 
and the gradients of both interpolants can be evaluated with minor additional ef- 
fort. However, the piecewise linear interpolant is much cheaper to evaluate than 
the piecewise multilinear interpolant: For the piecewise linear interpolant the dom- 
inant computational task is to sort N numbers, and for the piecewise multilinear 
interpolant the dominant computational task is to perform 2N multiplies. 

Table interpolation in N dimensions, N > 3, can be useful in situations where 
the alternative is to solve many more N-dimensional linear or nonlinear systems 
of equations than there are entries in the table. However, the storage required by 
strictly rectangular tables grows quickly with N: A typical table in practice might 
have ten entries in two or three crucial dimensions, and two or three entries in the 
other dimensions. 

The two-dimensional versions of both interpolants to be considered are discussed 
in standard numerical analysis texts, e.g. [3]. The piecewise multilinear interpolant 
is a straightforward extension of piecewise bilinear interpolation on rectangles. The 
piecewise linear interpolant is essentially first-degree multivariate B-spline interpo- 
lation [4], [6] on the Kuhn triangulation of the unit N-cube, e.g. [1], [7]: These 
are standard tools in multivariate approximation theory and simplex methods for 
finding fixed points and solutions to nonlinear equations. Vectorization and paral- 
lelization issues related to these interpolants are complex, and will not be discussed 
here. See [5] for a discussion of some of these issues when N = 1 and N = 2. 
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An N-dimensional rectangular table interpolant is an approximation 
F(x,... ,XN) to a function f(Xl,... , XN) which is computed from table values 
of f 

{f (Xil X Xi2 .* . *,X) iA = 1,*. .,fl, ., iN = 1,n... ,lN}. 

The gradient of the interpolant is 

aF1 aFN/ VF(x1, .X . N) = (FII ... FZXN)T = 9x ( 9XN) 

Both interpolants to be considered first find appropriate table intervals 

(XIl, XIl+1), **,(XIN , XIN+1) 

such that 

XIl _ X1 < XI1+1, ,XIN < XN < XIN. 

This can be done, for example, by the subroutine INTERV [2]. Scaling each interval 
to (0, 1) reduces the problem to that of finding an interpolant G(yl,... , YN) which 
approximates g(yi,.. ., YN) in the unit N-cube 

Q = (Yl, -YN) ? <- Yl < 1,...,0 <- YN < 1 

using the table values 

{g(ji, . ,jN): i = O or 1,. ..,jN = 0 or 1}, 

where 

= x, -~, X and 9(il,... ,jN) = f (X11. . , * *XIN+JN). 
XI'+1 -Xi, 

The two interpolants will now be described. 

2. A Piecewise Multilinear Interpolant. The piecewise multilinear inter- 
polant FM can be computed recursively: 

FM =G(yl,. ,YN) 

= G(y Y,.. .,YN , )+ GYN (y1,.., YN) 

where 
GYN (y1, . . ,YN) = G(yj,... YN- 1, 1) - G(yj, YN- 1 ?). 

In general, 

G(y,. ..,YiIji+1,* , jN) 

= G(yl, ... , yi-1, , ji+1, ..., jN) + yiGy (Y1,y , Yijii+1, *J,jN), 

where 

Gy, (yi, y. . Yji+, . . jN) 

=G(yl, *yi -1, 1, ji+l, ,jN) -G(yl, ..., Yi-1, , ii+l, *, jN) 

and 

G(jl, ..,iN) = 9(il, ,jN). 

For example, when N = 3, letting Yi = x, Y2 = y, and Y3 = Z, 

GM = G(x, y, z) = G(x, y, 0) + z(G(x, y, 1) - G(x, y, 0)), 
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where 
G(x, y, 0) = G(x, 0, 0) + y(G(x, 1, 0) - G(x, 0, 0)), 

G(x, y, 1) = G(x, O, 1) + y(G(x, 1, 1) - G(x, 0, 1)), 

and where 
G(x, 0, 0) = G(O, O, O) + x(G(1, 0, 0) - G(0, 0,0 )), 
G(x, 1, 0) = G(0, 1,0 ) + x(G(1, 1, 0) - G(0, 1,0 )), 

G(x, 0, 1) = G(0, 0, 1) + x(G(1, 0, 1) - G(0, 0, 1)), 

G(x, 1,1) = G(0, 1,1) + x(G(1, 1,1) - G(0, 1,1)). 

The gradient VFM can be built up along with FM by differentiating the recursion 
for FM: 

FM4 = Gs (yl,. .,YN)/(XI,+1 -XI1), 

where for i < N, 

GY (Yy1, YN)= GY(Yl,y, ,YN-1,0) +YNGYSYN(Y1,...,YN), 

with 

GY (Y1, .Y . , YN)= GY (Y,..., YN-1 1)-GY (y1, ..., YN-1, 0) 

In general, for k < i, 

GYk(yl,. *.,Yi,Ji+l, *,JN) 

=G Yk(y1,.. yj_ Yi- ?,ii+j, . jN) + yiG YkYs (yl, . y., Yi,i+l, ...jN) 

where 

G YkYs (yl, y, . Yji+li .. * * jN) 

= GYk(y*, ,Yi-_, l,Ji+1, , jN) - GYk (y, y, Yi-1, o,Ji+1, , jN). 

These quantities can all be assembled in a single array of length 2N, as illustrated 
in Figure 1 for N = 3. The quantities used to compute G.,z = G(x, y, z) are circled. 

G G 

'I 1 Cot Xyo oG V 

Ga1 Gy 
z 

FIGURE 1. Construction of Gm VGm 
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Computations are performed column-by-column, left-to-right, so that differenc- 
ing and then Taylor expansion are performed for each successive direction. It takes 
2N - 1 multiplies to compute FM and 2N+1 - 2 multiplies to compute both FM 
and VFM. 

The pointwise error bound for the piecewise multilinear interpolant is straight- 
forward [3], [8]. 

THEOREM 2. 1. For every z = (Yl, ... , YN)T in the unit N-cube Q, 

I(g - GM)(z)l < zT(e -z)jjgj|2, 

where e = (1,1.T. , i)" and the seminorm llgll is defined by 

lIgIl sup a2 gy) 
191 i=l,. ..,N | Y? 

y in Ql 

The bound is sharp for the function g(z) = zT(e -z); in this case GM(Z) 0. 
Using a simple scaling argument, one obtains 

THEOREM 2.2. For every z = (X1, .. ., XN)T within the table limits, 

I(f-FM)(z)I < ? h 2 sup a2f zX) 8 i=1...N 1X 
x 

where h = maxi,j IXij + 1-Xij 1. 

3. A Piecewise Linear Interpolant. The piecewise linear interpolant FL can 
be computed by breaking the unit N-cube into the N! simplices [1], [7] of the form 

Sp(l),...,p(N) = {(Y,l ... ,YN): 0 < Yp(1) < < Yp(N) < 1}, 

where (p(l), p(2),.. ., p(N)) is a permutation of the integers 1,... , N. The particu- 
lar simplex of interest is found by sorting the coefficients y1,.. , YN of the evaluation 
point. FL is of the form 

ao +aaly + **+aNYN 

in each simplex. The coefficients {ai } are defined so FL matches f at the N + 1 

corners o0,. . ., SN of the simplex, where si has 1 in positions p(j), j > i, and 0 
elsewhere. FL can be computed as follows: 

sort {yi} to determine {p(i)} 
8O = (1, ... ., 1)T 

FL := g(so) 
fori= 1 to N 

Si =Si- - ep(i) 

FL : FL + (1 - Yp(i))(g(si) -g(si1)) 
next i, 

where ep(j) has a 1 in position p(i) and 0 everywhere else. For example, Figure 2 
indicates the case N = 3, 0 < y < z < X < 1. 

The gradient VFL can also be evaluated cheaply: 
fori= 1 to N 

p(i)= 9(si-1i) - 

next1 - XIi. 
next i 
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I~~~~ ~ ~~~~~~~~ (1 1, 1 

S3=(O, 0,) - _ _ Y 

S2\ 

x 
FIGURE 2. S231 

A pointwise error bound for FL = GL is as follows: 

THEOREM 3.1. For every z = (Yl, ... ., YN)T in the unit N-cube Q, 

I(g - GL)(Z)l < ZT (e -z)|j|gjj| 2, 

where e = (1,..., 1)T and the seminorm Illglll is defined by 

Illglll = sup ID2g(y) 
0T0=1 

y in Q 

where Dog(y) is the directional derivative 

Dog(y) = lim g(y + hO) - g(y) 
h-.+O h 

Proof. In barycentric coordinates, 

N 
z = 

Ecisi, 
i=O 

where 0 < ci < 1 for all i and EN ci = 1. By Taylor's theorem, for each i, 

g(Si) = g(Z) + (Vg(z))T(Si - Z) + (s, - Z)T(s -z)D 2((i)/2 

for some (i on the line segment between si and z, and 

0 = (s9 - Z)/(( - Z)T(s -Z))1/2 
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Then 
N N N 

GL(Z) = Ecig(si) = Ecig(z) + E(Vg(z))cjC(si - Z) 
i=O i=O i=o 

N 

+ EciD 2g(di)(si - z)(si - z)/2 
i=O 

N 

=g(z) + E ciD 2g(di)(si - z)'(si - z)/2. 
i=o 

Therefore, 
N 

I(g - GL)(Z))| < E Ci(si - z)'(si-z)j|j12. 
i=O 

By symmetry, it now suffices to consider the simplex 

Si,...,N =y(Y1,***,YN): 0<Y < y <YN=1} 

It can be verified by induction that in this simplex, 

CO=YN, Ci=YN-i-YN-i+1, CN=l-Y1 

and 

(8 _ Z)T(8Oz _ Z 1 -yl)2 +.. + (1 -YN )2X 

(8, _-Z)T(8, _Z) = (1_y)2 + * * + (1 -Y -)2 2 
_Ni+l + YN2 

(SN _-Z)T (SN - Z) = Y1 + * * + y2 

for 0 < i < N. Cancelling terms, 

N 

E C(- Z)T(s, - Z) = Z (e - z). 
i=O 

The bound is sharp for the function g(z) = zT(e - z); in this case GL(Z) 0- 

This theorem could also have been proved using direct induction in the original 
coordinates: The resulting 0's would only occur in directions parallel to simplex 
edges. 

As before, by a scaling argument, one has 

THEOREM 3.2. For every z = (X1, .. ., XN)T within the table limits, 

I(f-FL)(Z)I N-h2 sup ID2f (X)I. 8z I < 
8 

x 

4. Discussion. We tested the relative computer times to evaluate FM and FL 

on an IBM 3081 computer using single precision and a simple bubble sort for FL. 

In this environment, floating-point multiplies and compares took about the same 
time. We found that once the intervals of interest had been selected, evaluating 
FM took about twice the time as FL for N = 4, and about 27 times the time for 
N = 10. 

Except for the norms on g, the pointwise error bounds for the two interpolants 
are identical, and the two interpolants are usually of comparable accuracy. Both 
interpolants are continuous and monotone. FL is continuous because the points 
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FIGURE 3. FL (zL) # FL (ZR) 

{8o} are chosen in a consistent way. Global continuity of FL would not hold if the 
point so in each N-cube was chosen independent of orientation (Figure 3). 

Each evaluation of FL depends on N + 1 table entries, while each evaluation of 
FM depends on 2N table entries. Thus, using FL can require many fewer function 
evaluations if table entries are only computed when needed. Since VFL is constant 
in each simplex, Newton's method applied to a vector function with components of 
the form of FL converges in one step after the simplex containing the solution is 
reached (cf. [1]). 

FIGURE 4a F IGURE 4b 

FL has a systematic preference in each N-cube for the direction from SN to so 
(Figure 4a). For instance, the value at the center of the N-cube depends only on 
the table values at so and SN. A variant that reduces the directional preference and 
maintains global continuity chooses so = (i(1), . . . , i(N)), where each i(j) is chosen 
so that the global index Ij + i(j) is even (Figure 4b). The resulting interpolant, in 
effect, changes coordinates from yj to 1 - yj whenever i(j) = 0. 

Exxon Production Research Company 
P.O. Box 2189 
Houston, Texas 77252-2189 



196 ALAN WEISER AND SERGIO E. ZARANTONELLO 

1. E. ALLGOWER & K. GEORG, "Simplicial and continuation methods for approximating fixed 
points and solutions to systems of equations," SIAM Rev., v. 22, 1980, pp. 28-85. 

2. C. DE BOOR, A Practical Guide to Splines, Springer-Verlag, New York, 1978, pp. 91-93. 
3. G. DAHLQUIST & A. BJ6RCK, Numerical Methods, Prentice-Hall, Englewood Cliffs, N. J., 

1974, pp. 319, 323. 
4. W. A. DAHMEN & C. A. MICCHELLI, "On the linear independence of multivariate B-splines, 

I. Triangulations of simploids," SIAM J. Numer. Anal., v. 19, 1982, pp. 993-1012. 
5. P. F. DUBOIS, "Swimming upstream: Calculating table lookups and piecewise functions," 

in Parallel Computations (G. Rodrigue, ed.), Academic Press, New York, 1982, pp. 129-151. 
6. K. HOLLIG, "Multivariate splines," SIAM J. Numer. Anal., v. 19, 1982, pp. 1013-1031. 
7. H. W. KUHN, "Some combinatorial lemmas in topology,"IBM J. Res. Develop., v. 45, 1960, 

pp. 518-524. 
8. M. H. SCHULTZ, Spline Analysis, Prentice-Hall, Englewood Cliffs, N. J. 1973, pp. 10-20. 


